MIDX-20
DUAL USB MIDI Host

Class Compliant USB MIDI devices
Roland/BOSS devices
Fender Mustang™ Amplifiers

MIDI /SYSEX
IMPLEMENATION

Firmware version 1.0
Rev. 2016-09-09

MIDX-20 MIDI Implementation



Table of Contents

REAd FIrMWare VEISION .....couiiiiiiieieete ettt ettt ettt sb e bt e sbe e s eme e st saee st e saneeaneeane
Read 32 Bytes from EEPROIM ..........uoii ittt ettt e e ttee e e ette e e e eatae e e s ate e e e e e eanaee e e entaeeeennees
Write 32 Bytes t0 EEPROM.....coiiiiiiiiiiiiiieeee ettt e sitree e e e s s s iara e e e e e s s s snsneee s
Calculating the CheCKSUM ......ci i e e e ae e e s naeee s

The EEPROIM data STrUCTUIE ....ceeiiveiieeeeeeeeeetie e e e eeetettee e e e eeettabaaeessesesesaassnseesssesssannnasseeesees

MIDX-20 MIDI Implementation



MIDX-20 MIDI/SYSEX

The MIDX-20 unit responds to a few MIDI SYSEX commands. These commands were
implemented to allow the MIDX-20 Assistant PC program to program the unit.

Read Firmware Version

This command is implement to determine the actual firmware version of the MIDX-
20, as future versions may have different EEPROM image and functionality. Use this
command to verify the version and to verify the connection status.

Request:

FOh 6Fh 10h 02h 11h

[01h ] <chksum> F7h

Answer:
FOh 6Fh 10h 02h 12h
[01h

00h 00h 00h 00h
<MajorVerLoNibble>
<MajorVerHiNibble>
<MinorVerLoNibble>
<MinorVerHiNibble>

]

<chksum> OxF7

Read 32 Bytes from EEPROM

The 256-byte EEPROM of the MIDX-20 holds all the device settings. It can only be
read or written to using 32 bytes in each request. See description of the EEPROM
structure for further details.

Request:

FOh 6Fh 10h  02h 11h

[ ODh <AdrLoNibble> <AdrHiNibble> ] <chksum> F7h
Answer:

FOh 6Fh 10h 02h 12h

[ ODh <AdrLoNibble> <AdrHiNibble>

32 data values split into lo and hi nibble (totally 64 MIDI bytes) in this form:
<DataloNibble>
<DataHiNibble>

]

<chksum> OxF7

MIDX-20 MIDI Implementation



Write 32 Bytes to EEPROM

Note: To write the full EEPROM structure (full EEPROM is max 256 bytes) you will
have to write several blocks of data.

Request:

FOh 6Fh 10h 02h 11h

[ OEh <AdrLoNibble> <AdrHiNibble>

32 data values split into lo and hi nibble (totally 64 MIDI bytes) in this form:
<DataloNibble>
<DataHiNibble>

] <chksum> F7h

Answer:

FOh 6Fh 10h  02h 12h

[ OEh <AdrLoNibble> <AdrHiNibble> ] <chksum> F7h

Calculating the checksum

The checksum need to be calculated for all bytes within the brackets [...] showed
above.

// Calculate Roland style checksum
BYTE SxCalcChecksum(BYTE* pBuf, WORD bytes)
{
WORD w;
BYTE* p = pBuf;
BYTE chksum = 0;
for (w=0; w<bytes; w++)
{
chksum += p[w];
if (chksum>128)
chksum = chksum-128;

¥
if (chksum>0)
chksum = 128-chksum;
chksum &= Ox7F; // Just in case
return chksum;

MIDX-20 MIDI Implementation _




The EEPROM data structure

The checksum need to be calculated for all bytes within the brackets [...] showed
above.

Note 1:
The member nSizeofStruct must be set to sizeof(EEPROM_DATA) = 242 bytes
The member nPattern must be set to 66 (decimal)

Note2:

The MIDI bytes (max 24) is actually what is used after image is written to the
EEPROM for footswitch press and release. Your final footswitch MIDI data need to be
put in the nFsonData and nFsoffData members. The members nFSonBytes and
nFSoffBytes must reflect how many of bytes occupied by these arrays.

As long as the MIDX-20 internal Wizard mode is not ran, the aforementioned buffers
will be used when a footswitch is pressed or released. This allow for a multitude of
possibilities when programming the device from an external source. Custom MIDI
commands at various channels or even SysEx commands may be initiated while
pressing or releasing the footswitches.

nFSLatched - Will try to unlatch a latched footswitch
nFSInvert - Will invert 0/1 for the footswitch
nFSRepeat - make the PC+/PC- auto repeat if hold.

#pragma pack( push, original_settings )
#pragma pack(1) // Needs one byte packing to be compatible with MIDX-20

typedef struct

{
BYTE nFSLatched; // Input foot switch is latched
BYTE nFSInvert; // Reverse polarity
BYTE nFSRepeat; // Enable repeat mode for PC+/PC-
BYTE nFSOpMode; // ©=CCLAT Send bytes for ON and OFF (latched)

// 1=CCMOM Send bytes for ON and OFF (momentary)
// 2=PC Fixed - (momentary)

// 3=PC Program Decrement mode - (momentary)

// 4=PC Program Increment mode - (momentary)

// 5=Start - (momentary)

// 6=Continue - (momentary)

// 7=Stop - (momentary)

BYTE nFS100; // FS Houndreds - Used internally by wizard
BYTE nFSe@10; // FS Tens - Used internally by wizard
BYTE nFSe01; // FS Ones - Used internally by wizard
BYTE nFSOnBytes; // Number of bytes to send when FS is 'ON'/DN
BYTE nFSOnData[24]; // MIDI bytes to send when FS is 'ON'/DN

BYTE nFSOffBytes; // Number of bytes to send when FS is 'OFF'/UP

BYTE nFSOffData[24]; // MIDI bytes to send when FS is 'OFF'/UP
} EEPROM_SWITCH;

typedef struct

{
MIDX-20 MIDI Implementation



BYTE nCTExprChnl; // ©-15 Channel for Expression pedal
// (or also FS, if using MIDX-20 internal Wizard)

BYTE nCTExprCC100; // Expression pedal CC# Houndreds
BYTE nCTExprCCo10; // Expression pedal CC# Tens
BYTE nCTExprCCo01; // Expression pedal CC# Ones

EEPROM_SWITCH fs[2]; // @=Tip 1=Ring
} EEPROM_CTRL;

typedef struct

{
BYTE nSizeOfStruct; // Number of bytes in this struct
BYTE bMergeFlag; // MIDI MERGE 0/1
BYTE nMIDXMode; // ©: Only send to device
// Both send and receive to a device

1:
// 2: Only receive from controller
3: Receive and send to a controller

BYTE nMustangChnlLWR; // ©-15 Channel for lower USB Mustang MIDI Bridge
BYTE nMustangChnlUPR; // ©-15 Channel for upper USB Mustang MIDI Bridge
EEPROM_CTRL ctrl[2]; // ©= CTRL1, 1= CTRL2
BYTE nPattern; // Should be 66 if properly set

} EEPROM_DATA;

#tpragma pack( pop, original_settings )

MIDX-20 MIDI Implementation u



